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Abstract10

We study the asymptotic behaviour of random integer partitions under a new probability law that11

we introduce, the Plancherel–Hurwitz measure. This distribution, which has a natural definition in12

terms of Young tableaux, is a deformation of the classical Plancherel measure. It appears naturally in13

the enumeration of Hurwitz maps, or equivalently transposition factorisations in symmetric groups.14

We study a regime in which the number of factors in the underlying factorisations grows linearly15

with the order of the group, and the corresponding maps are of high genus. We prove that the16

limiting behaviour exhibits a new, twofold, phenomenon: the first part becomes very large, while the17

rest of the partition has the standard Vershik–Kerov–Logan–Shepp limit shape. As a consequence,18

we obtain asymptotic estimates for unconnected Hurwitz numbers with linear Euler characteristic,19

which we use to study random Hurwitz maps in this regime. This result can also be interpreted as20

the return probability of the transposition random walk on the symmetric group after linearly many21

steps.22
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1 Random partitions, Plancherel and Plancherel–Hurwitz measures34

Let n ≥ 1 be an integer and let Sn denote the group of permutations on [n] := {1, 2, . . . , n}.35

The famous RSK algorithm (Robinson, Schensted, Knuth) associates each permutation36

σ ∈ Sn bijectively to a pair (P,Q) of standard Young tableaux of the same shape. It is37

impossible to overstate the importance of this construction in enumerative and algebraic38

combinatorics. At the enumerative level, the RSK algorithm gives a bijective proof of the39

following identity:40 ∑
λ⊢n

(fλ)2 = n!, (1)41
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Figure 1 A random partition of n = 2500 under the Plancherel–Hurwitz measure Pn,ℓ in the high
genus regime ℓ = 2⌊1.5n⌋ (sampled via a Metropolis–Hastings algorithm). The twofold asymptotic
behaviour is shown in yellow: the first part λ1 is asymptotic to 2ℓ

log(n) and escapes the picture, while
the rest of the partition scales in

√
n with a VKLS limit shape. See Theorem 2. The profile of the

partition is in red, while the VKLS limit shape scaled up to
√

n · Ω(x/
√

n) is the yellow curve.

where the sum is taken over integer partitions of n, and where fλ is the number of SYT43

(standard Young tableaux) of shape λ (see Figure 2 or Section 3). If the permutation σ is44

chosen uniformly at random, the shape λ of the associated tableaux is a random partition of45

n distributed according to the probability measure46

λ 7→ 1
n! (fλ)2, (2)47

which is the Plancherel measure of the symmetric group Sn.48

The study of random partitions under the Plancherel measure is an immense subject in49

itself with many ramifications. One of the classical and most famous results is the fact, due50

independently to Logan and Shepp [15] and Vershik and Kerov [19], that when n goes to51

infinity, the diagram of a Plancherel distributed partition converges in some precise sense to52

a deterministic limit shape (Theorem 7 below) that we call the VKLS limit shape following53

initials of these authors. Other deep results deal with the behaviour of the largest part λ1,54

which coincides with the longest increasing subsequence of the random permutation σ, which55

scales as 2
√
n with fluctuations of order n1/6 driven by a Tracy–Widom distribution [14].56

The book [17] is a delightful introduction to the subject.57

In this paper we will be interested in a generalisation of this measure, motivated by the58

study of transposition factorisation, or Hurwitz maps, discussed in the next section. For an59

even integer ℓ ≥ 0, we let Hn,ℓ be the number of factorisations of the identity of Sn into ℓ60

transpositions:61

Hn,ℓ = #{(τ1, τ2, . . . , τℓ) ∈ (Sn)ℓ, τ1τ2 · · · τℓ = id, each τi is a transposition}. (3)62

The Frobenius formula from representation theory of finite groups (see e.g. [12]) together with63

the combinatorial representation theory of Sn, gives an explicit expression for the number64

Hn,ℓ as a sum over partitions, vastly generalising (1) (which corresponds to ℓ = 0). Indeed,65

Hn,ℓ = 1
n!

∑
λ⊢n

f2
λ(Cλ)ℓ, (4)66

67
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Figure 2 The Young diagram of the partition (4, 2, 1) ⊢ 7 (in this paper we use the “Russian”
representation where boxes are tilted by 45◦). Left, its boxes are filled to produce a SYT of shape
(4, 2, 1); center, they are filled with their hook lengths, showing there are f(4,2,1) = 7!/(6 ·4 ·3 ·2) = 35
such tableaux; right, each box is filled with its content, which is the abscissa of its middle point in
this representation. The content-sum is C(4,2,1) = −2 − 1 + 0 + 0 + 1 + 2 + 3 = 3. The profile is the
piecewise linear function represented here in red (coordinate axes are in grey).

where Cλ is a combinatorial quantity, namely the sum of contents of all boxes of the partition68

λ (see Figure 2). The RHS of this formula naturally gives rise to a certain measure on69

partitions, which is our main object of study:70

▶ Definition 1 (Main object). For n ∈ Z>0, ℓ ∈ 2Z≥0, the Plancherel–Hurwitz measure is71

the probability measure on partitions of n defined by72

Pn,ℓ(λ) := 1
n!Hn,ℓ

f2
λ(Cλ)ℓ. (5)73

The measure Pn,ℓ is left invariant by conjugation of a partition (vertical reflection of the74

diagrams), which sends the content-sum Cλ to its opposite. For ℓ > 0 we will choose to work75

on the “positive half” of the measure, namely we let76

P+
n,ℓ(λ) := Pn,ℓ(λ|Cλ > 0) = 2 · 1Cλ>0 · Pn,ℓ(λ). (6)77

A partition distributed under Pn,ℓ for ℓ > 0 can be thought of as a partition distributed78

under P+
n,ℓ which is reflected about a vertical axis with probability 1

2 .79

When ℓ = 0 the measure Pn,ℓ is nothing but the Plancherel measure. Our main result80

deals instead with the case where ℓ grows linearly with n, corresponding to a high genus81

for the underlying map (see next section). The rescaled profile ψλ of a partition λ of n is82

the real function (piecewise linear with slope ±1) whose graph follows the contour of the83

diagram of λ in the coordinates of its tilted diagram representation, rescaled so that each84

box has area 1/n (see Figures 1 and 2).85

▶ Theorem 2 (Main result, see Figure 1). Fix θ > 1 and let λ ⊢ n be a random partition under86

the Plancherel–Hurwitz measure P+
n,ℓ in the “high-genus” regime given by ℓ = ℓ(n) := 2⌊θn⌋.87

Then, as n → ∞:88

(i) the first part λ1 is equivalent to 2ℓ
log n (in probability)89

(ii) the rest of the partition λ̃ = (λ2, λ3, . . .) has a VKLS limit shape. Namely, w.h.p.,90

sup
x

|ψλ̃(x) − Ω(x)| → 0, with Ω(x) =
{

2
π

(
arcsin x

2 +
√

4 − x2
)
, |x| ≤ 2

|x|, |x| > 2,
(7)91

92

where ψλ̃(x) is the rescaled profile of λ̃.93

We could include λ1 in the partition λ̃ of (7), since the supremum norm in this statement94

is insensitive to a small number of large parts. However, as Figure 1 indicates, λ1 is the only95

part not scaling as
√
n so we find this formulation more natural. Indeed, we can show that:96
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Figure 3 Three pure Hurwitz maps, each with 4 vertices, 6 edges and Euler characteristic χ = 0.
Left, the map corresponding to (12)(23)(34)(34)(23)(12) = id is connected and has genus 0; center,
the map corresponding to (12)4(34)2 = id has two connected components, of genus 1 and 0; right,
the map corresponding to (12)6 = id has three components, of genus 2, 0 and 0.

▶ Proposition 3. Under the hypotheses of Theorem 2 we have97

(iii) the second part satisfies λ2 ≤ (e+ o(1))
√
n w.h.p.98

We believe, as the figure strongly suggests, that the constant e can be replaced by 2 in the99

previous proposition. We have a strategy to prove this, but no full proof at the time of100

writing this extended abstract.101

2 High genus maps, Hurwitz numbers, and random walks102

Our original motivation to study the Plancherel–Hurwitz measure comes from the field103

of enumerative geometry and map enumeration. A map is a multigraph embedded on a104

compact oriented surface with simply connected faces, considered up to homeomorphisms.105

Equivalently it can be seen as a discrete surface, discretized by a finite number of polygons.106

Since the pioneering worsk of Tutte on planar maps (e.g. [18]) the enumeration of maps has107

proven to be particularly interesting, borrowing tools from physics, algebra and geometry108

and revealing their connections within combinatorics. These tools include matrix integral109

generating functions discovered by treating maps as Feynman diagrams [5], the topological110

recursion [11], and recurrence formulas based on integrable hierarchies [13]. Such exact111

methods have led to the asymptotic enumeration of many types of which notably exhibit a112

universal exponent of − 5
2 , and can extend to of surfaces with positive genus (e.g. [7]).113

These methods do not, however, extend to maps whose genus grows with the number114

of polygons. This “high genus” regime is one of the most recent and exciting development115

in the field, due the inefficiency of existing generating-function or bijective methods which116

require to develop new tools. The first result in this direction was recently obtained by117

Budzinski and the second author [6], who showed the following estimate for the number118

of (connected) triangulations of size n on a surface of genus g ∼ θn, by a combination of119

algebraic, combinatorial, and probabilistic methods:120

Tn,g = n2g exp[c(θ)n+ o(n)], g ∼ θn, (8)121

where c(θ) > 0 is a known continuous function. In this paper we will be interested in a122

different model of maps:123
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▶ Definition 4 (Hurwitz map, see Figure 3). A Hurwitz map with n vertices and ℓ edges is a124

map on a (non-necessarily connected) compact oriented surface, with vertices labelled from 1125

to n and edges labelled from 1 to ℓ, such that the labels of edges around each vertex increase126

(cyclically) counterclockwise. In such a map each vertex is incident to precisely one corner127

which is an edge-label descent. If moreover each face of the map contains precisely one such128

corner, the Hurwitz map is called pure.129

It is classical, and easy to see, that Hurwitz maps of parameters n and ℓ are in bijection130

with tuples of transpositions (τ1, . . . , τℓ) in Sn, while pure Hurwitz maps are in bijection131

with tuples whose product is equal to the identity. The bijection only consists in identifying132

tranpositions with edges of the map, and their index with the edge-label, see Figure 3 (this133

construction is a special case and an adaptation of the classical construction of “constellations”,134

see [4, 10]). The reader might find the definition of pure Hurwitz maps rather unnatural,135

however this model has a legitimate history in the field. In particular they are known [10], in136

the planar and fixed-genus cases, to belong to the same universality class as e.g. triangulations,137

quadrangulations, etc. We chose this model because among the natural models of maps, it is138

the one for which the connection to the Plancherel measure is the most combinatorial, and139

it is therefore a natural candidate to test the idea of using random partition techniques to140

study high genus random maps.141

It is important to insist that our maps are not necessarily connected, which is an142

important difference with most of the literature. A pure Hurwitz map of parameters n and ℓ143

has necessarily n faces, and its Euler characteristic χ, its number of components κ, and its144

generalised genus G (sum of the genera, or number of handles, of each connected component)145

are related by Euler’s formula:146

χ = #vertices − #edges + #faces = 2n− ℓ = 2κ− 2G. (9)147

This is why we call the regime ℓ ≫ 2n the “high genus” regime.148

By the above correspondence, the number Hn,ℓ introduced in (3) is the number of pure149

Hurwitz maps with n vertices and ℓ edges. This number is called an unconnected Hurwitz150

number in the enumerative geometry literature. As a consequence of our analysis of the151

Plancherel–Hurwitz measure, we obtain the following estimate:152

▶ Theorem 5 (Asymptotics of high genus unconnected Hurwitz numbers). As in (3), let Hn,ℓ153

be the unconnected Hurwitz number counting not necessarily connected pure Hurwitz maps154

with n vertices and ℓ = ℓ(n) = 2⌊θn⌋ edges, for θ > 1. Then, as n → ∞,155

Hn,ℓ =
(

n

logn

)2ℓ

exp
[
2(log θ − 2)ℓ+ o(n)

]
. (10)156

It is tempting to see this theorem as as strong (for our model) as the Budzinski–Louf157

estimate (8), but unfortunately this is not quite the case. The major difference is that our158

maps are not necessarily connected. Moreover, we can show that (the proof is omitted in159

this extended abstract but follows easily from our results)160

▶ Proposition 6. As n → ∞, a uniform random unconnected Hurwitz map with n vertices161

and ℓ = 2⌊θn⌋ edges contains a connected component with at least γ(θ)ℓ edges, for some162

function γ(θ) > 0, and m = o(ℓ) vertices, w.h.p.163

The fact that the “giant” edge-component in the previous proposition has a sublinear number164

of vertices seems to rule out the possibility of deducing asymptotics for the connected165

linear-genus regime from our results, at least not without new ideas.166

CVIT 2016
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At this point it is worth commenting that in map enumeration, the regime in which the167

genus is unconstrained, or superlinear, is often much easier to deal with than the linear168

case. In fact, the Plancherel–Hurwitz measure already appears (with no name) in the “super169

high genus” regime ℓ > 1
2n logn, in work of Diaconis and Shahshahani on the transposition170

random walk on Sn. They famously showed [8] that when ℓ ≥ 1+ϵ
2 n logn, the walk is strongly171

mixed after ℓ steps, and the proof essentially consists in showing that the Plancherel–Hurwitz172

measure is dominated by the trivial partition (n) in this regime. In this context, our result (10)173

can also be interpreted as an estimate on the return probability of the random walk after174

linearly many steps – much before the cut-off time, at a time when the Plancherel–Hurwitz175

measure still has a more subtle behaviour than the trivial partition.176

Finally, we note that related measures on partitions were studied by Biane in the context177

of the factorisation of characters of Sn [1], related to the intermediate regime ℓ = 2⌊θ
√
n⌋178

which we do not study in this work. The limit-shape phenomena observed in this reference179

are different from ours. We leave the study of a possible connection, and more generally the180

complete study of intermediate (sublinear) values of ℓ to further works.181

3 Elements of the classical Plancherel case182

Formally, a partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λℓ(λ)) of n (we write “λ ⊢ n”) is a weakly183

decreasing sequence of ℓ(λ) positive integers (called parts) which sum to n. We represent it184

by its Young diagram in Russian convention (Figure 2). A Standard Young Tableau (SYT)185

of shape λ ⊢ n is a filling of the boxes of its diagram with all the numbers from 1 to n which186

is increasing along rows and columns. The number fλ of such tableaux can be calculated by187

the “hook-length” formula188

fλ = n!∏
□∈λ hλ(□) (11)189

where the hook length hλ(□) is the number of boxes in a hook going down and right from190

the top edge of the diagram to □ and up and right to the top edge (Figure 2 again).191

The number fλ is famously equal to the dimension of the irreducible representation V λ
192

of the symmetric group indexed by λ, a representation theoretic connection that we have193

no space to develop here. We will only point out, for interested readers, that the sum of all194

transpositions in Sn acts on this module V λ as a scalar Cλ, which is explicitly given by the195

sum of contents as defined in the introduction (Figure 2 again). These two facts, together196

with classical representation theory, are the main reasons behind the Frobenius formula (4)197

expressing the count of transposition factorisations in Sn with tableaux-theoretic quantities.198

For ℓ = 0 the Plancherel–Hurwitz measure becomes the Plancherel measure Pn,0(λ) = 1
n!f

2
λ199

which, as said in the introduction, is very well understood.200

▶ Theorem 7 (Vershik–Kerov–Logan–Shepp (VKLS) [15, 19]). Let λ ⊢ n be a random partition201

under the Plancherel measure Pn,0. Then, as n → ∞ we have, w.h.p.,202

sup
x

|ψλ(x) − Ω(x)| = 0 and λ1 ≤ 2
√
n+ o(

√
n), ℓ(λ) ≤ 2

√
n+ o(

√
n) (12)203

where ψλ(x) is the rescaled profile of λ and Ω(x) is the curve defined at (7).204

Several proofs exists of this limit shape result. Perhaps the simplest and most conceptual205

ones use the formulation of the Plancherel measure in the language of fermions and the206

infinite wedge space, which provides direct connection with determinantal processes [3, 14].207
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Such approaches and their generalisations have grown into a vast field of research after the208

introduction of the theory of Schur processes (see e.g. [2] for an entry point).209

In the case ℓ > 0 that we study here, it is still possible (and natural) to formulate the210

Plancherel-Hurwitz measure in terms of the infinite wedge, see [16]. This leads to a deep211

connection with integrable hierachies (the KP and 2-Toda hierarchy in particular), and212

even to a simple looking recurrence formula to compute the number Hn,ℓ (more precisely,213

their connected counterpart, see [9]). However, we do not know how to use either of these214

tools to approach our problems (for readers familiar with the subject: the connection to215

determinantal processes in presence of a sandwiched content-sum scalar operator is unclear).216

Other, maybe more elementary, proofs of the VKLS theorem are based on a direct scaling217

of the hook-length formula (11) and variational calculus. We recommend the first chapters of218

the book [17] as a useful reference for such approaches. A key outcome of such an approach219

is the following estimate for the Plancherel measure of a partition λ in terms of its rescaled220

profile ψλ, see e.g. [17, Section 1.14]:221

Pn,0(λ) = 1
n!f

2
λ = exp

[
− n

(
1 + 2Ihook(ψλ) +O

(
logn√
n

))]
(13)222

where Ihook(·) is an “energy” functional defined by an explicit integral formula. The VKLS223

function Ω(x) previously introduced is the unique continuous function satisfying
∫

(Ω(x) −224

|x|)dx = 1 which minimises Ihook(Ω) (see e.g. [17, Section 1.17]). This implies the limit shape225

part of the VKLS theorem, since any partition whose profile is “far” from Ω(x) will appear226

with an exponentially small probability.227

The upper bound on the first part λ1 in the VKLS theorem does not directly follow from228

this limit shape analysis. Classical proofs usually depend either on the RSK algorithm or229

on the random growth process. The fact that neither of these tools exist in the context of230

factorisations (ℓ > 0) will make our proofs become harder, see comments in the next section.231

4 Proofs of our results232

We will now sketch the proofs of Theorems 5 and 2, and Proposition 3. Throughout this233

section, we consider λ to be a random partition of n distributed by the Plancherel–Hurwitz234

measure P+
n,ℓ with ℓ = ℓ(n) = 2⌊θn⌋. Heuristically, a random partition under P+

n,ℓ is driven235

by two different “forces”:236

1. on the one hand, the “Plancherel entropy”: the estimate (13) shows that there is an237

exponential cost for the partition, in terms of the Plancherel factor f2
λ, to deviate from238

the VKLS shape.239

2. on the other hand, the “content-sum entropy”: the factor (Cλ)ℓ can itself become240

exponentially high, so the partition may prefer to deviate from VKLS if this leads to a241

much higher content-sum.242

Our main theorem shows that the best way for the partition to adapt to this situation, is to243

“throw” all its contribution to a large content-sum in the first part λ1, and that after this the244

rest of the partition maximises the entropy classically. We establish this fact by successive245

refinements, in several steps.246

We now go through the proofs. We will use the notation Zn(Λ) = 1
n!

∑
λ∈Λ f

2
λ(Cλ)ℓ for247

any set Λ of partitions of n, such that the partition function of our model is Hn,ℓ = Zn({λ ⊢248

n}) = 1
n!

∑
λ⊢n f

2
λ(Cλ)ℓ. We also fix ε = 1

100 and split any partition λ ⊢ n into λ = λ+ ⊔ λ−
249

where λ+ denotes the parts that are greater than n1−ε and λ− the parts that are less than250

n1−ε, see Figure 4. We will use the following immediate and convenient bounds.251

CVIT 2016
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M − m

nε

λ− = µ
λ− = µ n1−ε

M − m

|λ+| = M

M

n1−ε n1−ε

λ− = µ

Figure 4 Left, a partition λ ⊢ n in Λ(µ, M, m), with λ+ and λ− indicated. Right, a SYT of
shape λ0 ∈ Λ(µ, M, 0) (the filling of the boxes is not shown) is transformed to a SYT of some shape
λ ∈ Λ(µ, M, m) or to something else by the surjective operation used to prove Claim 13.

▶ Lemma 8 (Useful bounds). Let λ ⊢ n with λ+ = (λ1, . . . , λp), then252

(i) 1
n!f

2
λ ≤ n|λ+|∏p

i=1
(λi!)2 ,253

(ii) Cλ ≤ λ1n
2 ,254

(iii) Cλ =
∑p

i=1

(
λi(λi−1)

2 − (i− 1)λi

)
− p|λ−| + Cλ− .255

We now proceed with the succession of lemmas that constitutes the core of our proof.256

▶ Lemma 9 (Bounding the partition function below). We have257

Hn,ℓ ≥ exp [2ℓ(log ℓ− log logn) − ℓ(2 − log 2) + o(n)] . (14)258

Proof. Let L := 2ℓ
log n and λ∗ = L ⊔ µ with µ maximising fλ among all partitions of n− L

with non-negative content-sum. Using Lemma 8(iii) we have

Cλ∗ = L(L− 1)
2 − |µ| + Cµ

from which it is not difficult to show that259

Zn({λ∗}) ≥ exp [2ℓ(log ℓ− log logn) − ℓ(2 − log 2) + o(n)] . (15)260

and this finishes the proof since Hn,ℓ = Zn({λ ⊢ n}) ≥ Zn({λ∗}). ◀261

The following lemma controls the contribution of “big parts” λ+ in a Plancherel–Hurwitz262

random partition. The “truncation” threshold n0.99 is somewhat arbitrary at this stage and263

will be improved to O(
√
n) at the very end of our analysis.264

Throughout the following, let λ be a random partition under the Plancherel–Hurwitz265

measure P+
n,ℓ at high genus, with ℓ = 2⌊θn⌋.266

▶ Lemma 10 (Controlling big parts). W.h.p., we have |λ+| ∈ [ 1
2L,

5
2L] where L = 2ℓ

log n .267

Proof. Let Rλ = |λ+| log n
ℓ . For all λ ⊢ n, by Lemma 8(i),268

1
n!f

2
λ ≤ exp(−(1 − 2ε)Rλℓ+ 2|λ+| + o(n)). (16)269

270

On the other hand, by Lemma 8(ii)-(iii), if Cλ ≥ 0, then271

Cℓ
λ ≤ exp(2ℓ(log ℓ− log logn) + ℓ(log(R2

λ + n2−ε log2 n

ℓ2 ) − log 2)). (17)272
273
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Combining (16) and (17), and using (14), we obtain274

Zn({λ})
Hn,ℓ

≤ exp
[
ℓ(2 − (1 − 2ε)Rλ + log

(
R2

λ + n2−ε log2 n

ℓ2

)]
(18)275

276

hence for n large enough and λ ⊢ n with Rλ ̸∈ [1, 5], P+
n,ℓ(λ) ≤ exp(−ℓ/100), which entails277

the result since there are eO(
√

n) partitions of n. ◀278

▶ Lemma 11 (Uniqueness of the big part). W.h.p., λ+ = (λ1).279

The proof of Lemma 11 requires to compare the contribution of partitions having a single280

big part, to those having more than one (indeed, because we do not have exact formulas nor281

precise estimates on our partition functions, we can only rely on “comparison” of probabilities282

at this stage). We will perform this comparison among partitions having the same set of283

“small parts” (called µ below).284

For non-negative integers M,m and partitions µ ⊢ n−M , we let Λ(µ,M) = {λ||λ+| =285

M,λ− = µ} and Λ(µ,M,m) = {λ ∈ Λ(µ,M)|λ1 = M − m}. We also use the notation286

λ0 = M ⊔ µ so that Λ(µ,M, 0) = {λ0}. We will need the following two claims, whose proof287

is postponed to after that of the lemma.288

▷ Claim 12. For all λ ∈ Λ(µ,M,m), we have Cλ ≤ Cλ0 − (m− 1) M
2 .289

▷ Claim 13. If m > 0 then,
∑

λ∈Λ(µ,M,m) fλ ≤ fλ0 exp[m(2ε logn+ 1)].290

Proof of Lemma 11. By Lemma 10, we know that, w.h.p., |λ+| ∈ [ ℓ
log n , 5

ℓ
log n ]. We can291

thus assume this event for the rest of this proof.292

We now condition on |λ+| = M and λ− = µ, with given M ∈ [ ℓ
log n , 5

ℓ
log n ] and µ ⊢ n−M .293

Combining Claims 12 and 13 for m > 0, one obtains294

Zn(Λ(µ,M,m))
Zn({λ0}) ≤ exp

[
ℓ log

(
1 − (m− 1)M

2Cλ0

)
+ 2m(2ε logn+ 1)

]
. (19)295

But we know that Cλ0 ≤ (1 + o(1)) M2

2 and M ≤ 5 ℓ
log n . Hence296

Zn(Λ(µ,M,m))
Zn({λ0}) ≤ exp

[
−m logn

100

]
(20)297

298

Summing this over all m > 0 (recall that m ≥ n1−ε if the set is non-empty), we have299 ∑
m>0

Z(Λ(µ,M,m)) = o(Z({λ0})) (21)300

which is enough to conclude that λ+ = (λ1) w.h.p. ◀301

Proof of the claims. The first claim is direct. For the second one, we need to define a proper302

“redistribution” operation that enables us to compare the contribution of partitions with one303

big part to others. To do this, we will describe an operation taking as input a SYT of shape304

λ0 plus some information, and outputting a SYT of some λ ∈ Λ(µ,M,m), or something else,305

such that this operation is surjective on Λ(µ,M,m).306

Input: A SYT T of shape λ0.307

1. Create nε empty rows between the first row of T and the rest,308

2. choose m numbers in the first row of T (
(

M
m

)
choices),309

3. for each of these numbers, choose one of the newly created rows, and move it there (nε
310

choices each time),311
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4. sort each row and delete the empty rows, output the result.312

It is easily checked that this procedure can output any SYT of λ for any λ ∈ Λ(µ,M,m)313

(indeed, for such a λ, λ+ must have at most n
n1−ε = nε rows). Hence we have314 ∑

λ∈Λ(µ,M,g)

fλ ≤
(
M

m

)
nεgfλ0 ≤ fλ0 exp(m(2ε logn+ 1) (22)315

316

where in the last inequality we used Stirling’s approximation along with the facts that317

logM ≤ logn and logm ≥ (1 − ε) logn. ◁318

We can now collect the fruits of the previous lemmas to obtain our main theorems.319

Proof of Theorem 5. The previous lemmas imply that for a Plancherel–Hurwitz distributed320

partition λ, we have w.h.p. Cλ = (1 + o(1))λ2
1

2 . On the other hand, we have 1
n!f

2
λ ≤321

n!
(λ1!)2(n−λ1)! , hence322

Zn({λ}) ≤ exp [2ℓ log(λ1) − ℓ log 2 − λ1 logn+ o(n)] . (23)323
324

Now we substitute λ1 = Rλℓ
log n in the inequality above, and we obtain325

Zn({λ}) ≤
(

n

logn

)2ℓ

exp
[
2(log θ − 2)ℓ

]
exp [ℓ(2(logRλ − log 2) + 2 −Rλ) + o(n)] .326

327

Now, since for x > 0 we always have 2(log x− log 2) + 2 − x ≤ 0, we get328

Z({λ}) ≤
(

n

logn

)2ℓ

exp
[
2(log θ − 2)ℓ+ o(n)

]
.329

330

This, together with the lower bound of Lemma 9, proves Theorem 5 since there are eO(
√

n)
331

partitions of n. ◀332

Proof of Theorem 2, part (i). The last argument of the previous proof also implies that333

Pn,ℓ(λ) ≤ exp [ℓ(2(logRλ − log 2) + 2 −Rλ) + o(n)] . (24)334

Now, the function on positive reals x 7−→ 2(log x− log 2) + 2 − x has a unique maximum at335

x = 2. Any non-negligible deviation of Rλ from this maximum thus entails an exponentially336

decreasing probability, which is enough to conclude that Rλ = 2 + o(1) w.h.p. ◀337

Proof of Theorem 2, part (ii). The previous discussions imply that, w.h.p., Cλ = (1 +338

o(1))2
(

ℓ
log n

)2
and fλ =

(
n
λ1

)
fλ̃e

o(n), which, by Theorem 5 and the Plancherel entropy339

estimate (13), lead to340

Pn,ℓ(λ) ≤ exp (2n(Ihook(ψλ) − Ihook(Ω)) + o(n)) . (25)341

This implies, as in the classical Plancherel case (see [17, Section 1.17]), the almost sure342

convergence in supremum norm to the VKLS limit shape. ◀343

It only remains to prove Proposition 3, i.e. to upper bound the size of λ2. As we said344

already, the VKLS limit shape result in supremum norm does not imply such a bound, and345

even in the Plancherel case extra arguments are needed. We find convenient here to refer346

again to Romik’s book where two bounds are given for the largest part in the Plancherel347

regime:348
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L

k
µ ⊢ n − L − k µ ⊢ n − L − k

L

Figure 5 Partitions L ⊔ k ⊔ µ ⊢ n and L ⊔ µ ⊢ n − k.

an elementary bound, based on a first moment calculation and the RSK algorithm, which349

is enough to establish a bound of the form (e+ o(1))
√
n ([17, Lemma 1.4]).350

a more sophisticated bound based on the Cauchy–Schwartz inequality and on the existence351

of the corner-growth process for the Plancherel measure, which leads to the sharp bound352

(2 + o(1))
√
n ([17, Section 1.19]).353

In our context, we unfortunately do not have the analogue of the RSK algorithm (see next354

section), let alone of the corner growth process. The proof below mimics the first moment355

argument of the classical proof at the level of tableaux, and together with previous estimates356

on the partition functions enable us to reach the bound (e+ o(1))
√
n. A subtler approach357

which tries to mimic the corner growth process as in the second proof should enable us to358

attain soon the (conjectured) bound (2 + o(1))
√
n in which case it will appear in the journal359

version of this paper.360

Proof of Proposition 3. Under the Plancherel-Hurwitz measure, if we condition on the first361

part being λ1 = 2ℓ
log n = L, the distribution of the second part is362

P(λ2 = k|λ1 = L) = 1
n!Zn[L]

∑
µ⊢n−L−k

f2
L⊔k⊔µC

ℓ
L⊔k⊔µ. (26)363

where Zn[L] ≡ Zn({λ ⊢ n|λ1 = L}). Comparing SYT of shape L ⊔ k ⊔ µ ⊢ n with ones of364

shape L⊔µ ⊢ n−k, obtained by removing the second part, and the contents of the partitions,365

we have366

fL⊔k⊔µ ≤
(
n

k

)
fL⊔µ, CL⊔k⊔µ = CL⊔µ − |µ| + k2

2 = CL⊔µ(1 + o(1)) (27)367

and from there we obtain368

P(λ2 = k|λ1 = L) =
(
n

k

)2 (n− k)!
n!

Zn−k[L]
Zn[L] (1 + o(1)). (28)369

Now, following an application of the identity nfµ =
∑

ν:µ↗ν fν for µ ⊢ n, where “µ ↗ ν”370

means that ν is obtained from µ by adding one box, and using elementary bounds on the371

variation of the content-sum when a single box is added, it is possible to show that372

Zn[L] = Zn−1[L]eo(1). (29)373

It follows that374

P(λ2 = k|λ1 = L) = n!
k!2(n− k)!e

o(k) ≤ nk

(k/e)2k
eo(k), (30)375

and, to conclude the proof,376

∀ε > 0, lim
n→∞

P(λ2 = (1 + ε)e
√
n|λ1 = L) = 0 (31)377

and we have λ2 ≤ e(1 + o(1))
√
n w.h.p. as n → ∞. ◀378
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5 Open questions and perspectives379

Maybe the main open question that follows our work is the following: does there exist an380

analogue of the RSK algorithm proving combinatorially the identity (4)? If this is the case,381

then our results about λ1 and λ2 probably translate into distributional limit theorems for382

certain parameters of random factorisations (or random pure Hurwitz maps). To start with,383

can one identify the “meaning” of the statistic λ1 on the Hurwitz side?384

Another question is, of course, to know if one can use the Plancherel–Hurwitz approach to385

say anything about connected Hurwitz maps of high genus. This would be very interesting. It386

may also be interesting to combine this approach with the technology of integrable hierarchies,387

which have been so fruitful but have so far not directly led to precise asymptotic estimates388

nor limit theorems for connected random maps or Hurwitz numbers of high genus.389
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